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Abstract
We present a new approach to the construction of biorthogonal wavelet transforms us-
ing polynomial splines. The construction is performed in a "lifting" manner and we use
interpolatory, as well as local quasi-interpolatory and smoothing splines as predicting
aggregates in this scheme. The transforms contain some scalar control parameters which
enable their flexible tuning in either time or frequency domains. The transforms are
implemented in a fast way. They demonstrated efficiency in application to image com-
pression.

1 Introduction
Until recently, two methods have been used for the construction of wavelet schemes
using splines. One is to construct orthogonal and semi-orthogonal wavelets in the spline
spaces (Battle-Lemari6 [2, 7], Chui-Wang [6], Unser-Aldroubi-Eden [12]). Another way
was introduced by Cohen, Daubechies and Feauveau [3] who constructed symmetric
compactly supported spline wavelets whose duals, remaining compactly supported and
symmetric, do not belong to a spline space. However, since the introduction of the lifting
scheme for the design of wavelet transforms [11], a new way was opened to use splines as
a tool for devising a full discrete scheme of wavelet transforms. Namely, various splines
can be employed as predicting aggregates in lifting constructions.

2 Lifting scheme of biorthogonal wavelet transform
The sequences {a(k)}J•=-, which belong to the space 11, we call the discrete-time sig-
nals. The z-transform of a signal {a(k)} is defined as follows: a(z) = E' z-k a(k).k=-,,,ae )

Throughout the paper we assume that z = ei". We introduce a family of biorthogonal
wavelet-type transforms that operate on the signal x = {x(k)} I__, which we construct
through lifting steps.

The lifting scheme for the wavelet transform of a signal can be implemented in primal
or dual modes. For brevity we consider only the primal mode.

Decomposition Generally, the primal lifting scheme for decomposition of signals con-
sists of three steps: 1. Split. 2. Predict. 3. Update or lifting.

SPLIT - We split the array x into even and odd sub-arrays:

el = {el(k) = x(2k)}, di = {d 1 (k) = x(2k + 1)}, k E Z.
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PREDICT - We use the even array el to predict the odd array d, and redefine the
array d, as the difference between the existing array and the predicted one. To be specific,
we apply some filter with transfer function zU(z) to the sequence el and predict the
function dl (z 2) which is the z2 -transform of di. The z2 -transform of the new d-array
is defined as follows:

d'(z2 ) = di(Z 2) - zU(z)ei(z 2 ). (2.1)

From now on the superscript u means an update operation of the array. Obviously, the
prediction zU(z)el(z 2 ) should approximate dl(z 2) well.

LIFTING - We update the even array using the new odd array:

e(Z2) = el(z2) -1- (z)z1 d(z 2 ). (2.2)

Generally, the goal of this step is to eliminate aliasing which appears while downsampling
the original signal x into eL. Further on we will discuss how to achieve this effect by a
proper choice of the filter 3.

Reconstruction The reconstruction of the signal x from the arrays e" and du is
implemented in reverse order: 1. Undo Lifting. 2. Undo Predict. 3. Unsplit.

UNDO LIFTING - We restore the even array: ei(z2 ) = e•(z 2 ) - i(z)z- 1 du(z 2).

UNDO PREDICT - We restore the odd array: d&(z2) = du(z 2 ) + zU(z)el(Z2).
UNSPLIT - The last step represents the standard restoration of the signal from its

even and odd components. In the z-domain this is x(z) = el (z 2) + z- 1 dl (z2 ).
The lifting scheme presented above, yields an efficient algorithm for the implementa-

tion of the forward and backward transform of x *-* e' U d'. These operations can be
interpreted as a transformation of the signal by a filter bank that possesses the perfect
reconstruction properties and it is associated with the biorthogonal pairs of bases in the
space of discrete-time signals. These basis signals are synthesis and analysis wavelets.
Further steps of the transform are implemented in an iterative way by the same lifting
operations.

3 Polynomial splines

We will construct polynomial splines of various kinds using the even subarray of a signal,
calculate their values in the midpoints between nodes and use these values for prediction
of the odd array. In this section we discuss some properties of such splines and derive
the corresponding filters U.

3.1 B-splines

The central B-spline of first order on the grid {kh} is defined as follows:
Mh 1/h if x E [-h/2, h/2],

h (x) 0 elsewhere.

The central B-spline of orderp is the convolution Mhl(x) = Mp-1 (x)*Mh(x) p.12.
Note that the B-spline of order p is supported at the interval (-ph/2, ph/2). It is positive
within its support and symmetric around zero. The nodes of B-splines of even orders
are located at points {kh} and of odd orders at points {h(k + 1/2)}, k E Z. It is readily



316 Z. Averbuch and V. A. Zheludev

verified that hMW (hx) = MP(x), where MP(x) MP (x). Let

UP = {hMh(hk) = MP(k)}, and wp := {hMpj (h(k + 1/2)) = Mp (k + 1/2)}, k E Z.
(3.1)

Due to the compact support of B-splines, these sequences are finite. We will use for our
constructions only splines of odd orders p = 2r - 1. In Table 1 we present the sequences
for initial values r which are of practical importance.

k -3 -2 -1 0 1 2 3

u x8 0 0 1 6 1 0 0
u5x384 0 1 76 230 76 1 0
W3 x2 0 0 1 1 0 0 0
w 5 x24 0 1 11 11 1 0 0

TAB. 1. Values of the sequences up and W.

We need the z 2 -transforms of the sequences up and wP

up(z 2 ):= E z- 2 kup(k), wp(z 2) :- E z- 2 kwP(k).

k=-ook=-00

These functions are Laurent polynomials, and are called the Euler-Frobenius polynomials
[10].

Proposition 3.1. ([9]) On the circle z = e" the Laurent polynomials uP(z 2 ) are
strictly positive. Their roots are all simple and negative. Each root ( can be paired with

a dual root 0 such that C 0 = 1. Thus, if p = 2r± 1 is odd, then uP(z 2 ) can be represented

as follows:

UP(z 2 ) = 1I (1 + _"z 2 )(1 + Yz -2 ), 0 < yn < 1. (3.2)
n=1 Y

We denote

UP(z) :=-Z- 1 
wp(z

2
) (3.3)UP(z2)"

Proposition 3.2 The rational functions Ui'(z) are real-valued and UP(-z) - -U(z).
If p = 2r + 1 is odd then

1 - UP(z) (a - 2)r+r() 1-Uz)(-( - 2)r+l1r((-a)

uP(z+Vz)= u(z) , (3.4)

where a := z + z- 1 and 6r (a) is a polynomial of degree r - 1.

3.2 Interpolatory splines

The shifts of B-splines form a basis in the space SP of splines of order p on the grid kh.
Namely, any spline STp E SP has the following representation:

Sh(x) = h q(l) Mj(x - lh). (3.5)
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Let q {q(l)}, and q(z 2) be the z2 -transform of q. We introduce also the se-
quences sp := h{SP(hk) - SP(k)} and mp := {SP(h(k + 1/2)) = SP(k + 1/2)} of values
of the spline on the grid points and on the midpoints. Let sP(z 2) and mP(z 2) be the
corresponding z2-transforms. We have

SPI(k) q(1)Mh(k-1), and Sp( k-+ =-q(l) Mh( k-l+ ). (3.6)
1 2

Respectively, sP(z 2) = q(z 2 )u(z 2), and mP(z 2) = q(z 2 )w(z 2 ).
From these formulae we can derive expression for the coefficients of a spline which

interpolates a given sequence e := {e(k)} at grid points:

hSP(hk) = e(k), k e Z, 4==ý q(z)uP(z) = e(zP) q(z2) - e(Z 2) (3.7)Up (Z2). 37

The z 2 -transform of the sequence mp is:

nP (z 2 ) = q(z 2 )wP(z 2 ) = zUV•(z)e(z 2). (3.8)

Our further construction exploits the super-convergence property of the interpolatory
splines of odd orders (even degrees).

Theorem 3.3. ([13]) Let a function f E L 1 (-oo, oc) have p+l continuous derivatives
and let Sp E SP interpolate f on the grid {kh}. Denote fk = f((k + 1/2)h). Then in the
case of odd p = 2r + 1, the following asymptotic relation holds.
SP(h(k+l/2)) jk-h2r+2f(2r+2)(h(k+1/2))(2r+l) b2 r+ 2 (0) - b2r+2(i) -°(h2r+2f(2r+2))

S~h~k12) f hT 2 (r (2r + 2)!

(3.9)
where b8(x) is the Bernoulli polynomial of degree s.

Recall, that in general the interpolatory spline of order 2r + 1 approximates the
function f with accuracy of h2r+1. Therefore, we may claim that {(k + 1/2)h} are
points of super-convergence of the spline Sp. Note, that the spline of order 2r + 1, which
interpolates the values of a polynomial of degree 2r, coincides with this polynomial.
However, the spline of order 2r + 1 which interpolates the values of a polynomial of
degree 2r + 1 on the grid {kh} restores the values of this polynomial at the mid-points
{(k+ 1/2)h}. This property will result in the vanishing moments property of the wavelets
to be constructed later.

3.3 Quasi-interpolatory splines

We can see from (3.7) and (3.8) that in order to find values at the midpoints of the spline
interpolating the signal e, the signal has to be filtered with the filter whose transfer
function is zUiP(z). This filter has infinite impulse response (IIR). However, the property
of super-convergence at the midpoints is not an exclusive attribute of the interpolatory
splines. It is also inherent to the so called local quasi-interpolatory splines of odd orders,
which can be constructed using finite impulse response (FIR) filtering.

Definition 3.4 Let the function f have p continuous derivatives and f := {fk =

f(hk)}, k E Z. The spline Sh e SP of order p given by (3.5) is said to be the local
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quasi-interpolatory spline if the array q of its coefficients is derived by FIR filtering the
array of samples f

q(z2 ) = r(z 2 )f(z 2 ), (3.10)

where F(z 2 ) is a Laurent polynomial, and the difference If(x) - SV(x)I = O(f(P)hP). If

f is a polynomial of degree p - 1, then the spline SP(x) - f(x).

If wp is the sequence defined in (3.1) then the midpoint values mp are produced by
the following FIR filtering of the array of samples f: mP(z 2 ) = zUP(z)f(z 2 ), UP(z):=
z-1 F(z 2)wp(z 2 ). Explicit formulas for the construction of quasi-interpolatory splines as

well as the estimations of the differences were established in [13]. In the present work
we are interested in splines of odd orders p = 2r + 1. There are many FIR filters which
generate quasi-interpolatory splines but only one filter of minimal length 2r + 1 for each
order p = 2r + 1. Let A(z) := z - 2 + z2 .

Theorem 3.5 A quasi-interpolatory spline of order p = 2r + 1 can be produced by
filtering (3.10) with filters F of length no less than 2r + 1. There exists a unique filter
I" of length 2r + 1 which produces the minimal quasi-interpolatory spline "2 r+l (x) . Its

transfer function is:

Fr(Z 2 ) +-1 + EZ kr A(z), --r--n = (--1) /3t 2 k. (3.11)
k=1 k -O

If the function f has 2r + 3 derivatives then the following asymptotic relations hold
for the midpoint values of the minimal quasi-interpolatory spline of odd order:

Sh+ (h(k + 1/2)) = f(h(k + 1/2)) + h2 +2f( 2 •+2 )(h(k + 1/2))Ar +)h

Ar := (2r + 1)b 2,+2(0) (3.12)
(2r + 2)!

where b,(x) is the Bernoulli polynomial of degree s.

This implies that the super-convergence property is similar to that of the interpol-
atory splines. The asymptotic representation (3.12) provides tools for custom design of
predicting splines retaining or even enhancing the approximation accuracy of the min-
imal spline at the midpoints.

Proposition 3.6 If the coefficients of the spline S2,+ 1 E S2,+ 1 of order 2r + 1 are
derived as in (3.10) using the filter Fr of length 2r + 3, with the transfer function
FP(z 2 ) = Fr(z 2 ) + pAM+1(z), then the spline restores polynomials of degree 2r + 1 at
the midpoints between nodes, for any real value p. However, if p = -A' then the spline
restores polynomials of degree 2r + 3.

If the parameter p is chosen such that p = (-l)rijP then the spline Sh'+I possesses
the smoothing property [14].
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3.4 Examples

3.4.1 Quadratic splines

Interpolatory spline Let a = z- 1 + z. Then

Ui Z)= 4a , and 1 - Ui'(Z) ( - 2_ )26- z•

U(z) z 2 +6+z-2 and 1 -U+(Z

Minimal spline The filters are
F1 (z2 ) = 16 1' - +9z

8 ' m'z) 16
and 1-U(Z) (a- 2) 2 (z-1 +4+ z)

16

Extended spline
1  U(Z) 3z 5 - 25z 3 + 150Z5 + 150z - 25z 3 + 3z5

F g(z2)= 1 Z2 + 1 -j, (Z ), U = 256 -

and 1 - u1(z) = (a - 2)3 (3z- 2 + 18z- 1 + 38 + 18z + 3z 2 )
256

Remark 3.7 In [5] Donoho presented a scheme where an odd sample is predicted by
the value in the central point of the polynomial of odd degree which interpolates adjacent
even samples. One can observe that our filter Ul coincides with the filter derived by
Donoho's scheme using the'cubic interpolatory polynomial. The filter U1 coincides with
the filter derived using the interpolatory polynomial of fifth degree. On the other hand,
the filter U1 is closely related to the commonly used Butterworth filter [8]. Namely, in
this case the filter transfer functions 4' (z) := (1 + Ul (z))/2, uIlh(z) (1"U (z))/2
coincide with magnitude squared of the transfer functions of the discrete-time low-pass
and high-pass half-band Butterworth filters of order 4, respectively.

3.4.2 Splines of fifth order (fourth degree)
Interpolatory spline

2 16(z 3 + llz + 11z- 1 + z- 3 ) (a - 2)3 (a - 10)
Z4 + 76z 2 + 230 + 76z-2 + z- 4 ' z 4 + 76z 2 + 230 + 76z-2 + z-4

Minimal spline The filter is

UV2(z) = 47(z-7 + z 7) + 89(z- 5 + z 5) - 2277(z- 3 + z 3 ) + 15965a

27648

4 Wavelet transforms using spline filters
4.1 Choosing the filters for the lifting step

In the previous section we presented a family of filters U for the predicting step which
were originated from splines of various types. But, as it is seen from (2.2), to accomplish

Sthe transform we have to define the filter /3. There is a remarkable freedom in the choice of
these filters. The only requirement needed to guarantee a perfect reconstruction property
of the transform is that /3(-z) =/3(z). In order to make synthesis and analysis filters
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similar in their properties, we choose O(z) = O(z)/2, where 0 means one of filters U
presented above. In particular, U may coincide with the filter U which was used for the
prediction.

We say that a wavelet 0 has m vanishing moments if the following relations hold:
E1Ck'Vk)(k)=0, s=0,1,...,m-1.

Proposition 4.1 Suppose the filters U(z) and 13(z) = (U(z)/2 are used for the predicting
and lifting steps, respectively. If 1 - U(z) contains the factor (z - 2 + l/z)' then the
high-frequency analysis wavelets 51 have 2r vanishing moments. If, in addition 1 - O(z)
contains the factor (z-2+l/z)p then the synthesis wavelet 7P has 2q vanishing moments,
where q = min{p, r}.

4.2 Implementation of the transforms

Suppose, we have chosen the filter 3 = L/2. The functions zU(z) and zlJ(z) depend on
z2 and we write F(z 2 ) := zU(z) and P(z2) := zt/(z). Then the decomposition procedure
is (see (2.1), (2.2)):

dr(z) =di(z) -F(z)el(z), e'(z) = el(z)+ 1+ (z)dY(z). (4.1)

Equation (4.1) means that in order to obtain the detail array d", we must process the
even array el with the filter F, with transfer function F(z), and extract the filtered array
from the odd array dj. In order to obtain the smoothed array e', we must process the
detail array d, with the filter 4) that has the transfer function 4(z) = z- F(z)/2 and
add the filtered array to the even array el. But the filter 4 differs from Fr/2 only by
one-sample delay and it operates similarly. Thus, both operations of the decomposition
are, in principle, identical. For the reconstruction the same operation is conducted in
reverse order.

Therefore, it is sufficient to outline the implementation of the filtering with the func-
tion F(z).

Implementation of FIR filters originating from local splines is straightforward and,
therefore we only make a few remarks on IIR filters originating from interpolatory
splines. A detailed description can be found in [1]. Equations (3.2) and (3.3) imply
that, while the interpolatory spline of order 2r + 1 is used, the transfer function F(z) =

P(z)/I,_1 , (1 + -yz)(1 "--,'nz-
1 ), where P(z) is the Laurent polynomial. It means

that the IIR filter F can be split into a cascade consisting of a FIR filter with the
transfer function P(z), r elementary causal recursive filters denoted by R(n , and r ele-
mentary anti-causal recursive filters, denoted by P(n). The causal and anti-causal filters
operate as follows:

y = R(n-x <==> y(l) = x(l) + -Yny(l - 1), y = f(n)x 4 y(l) = x(l) + 0y(l + 1).

Example 4.2 (Example of recursive filter) We present IIR filters derived from the
interpolatory splines of third order.
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Let y•' 3 - 2vf P 0.172. Then

F1 (z) = 4-y' (I + + Z

The filter can be implemented with the following cascade:
xo(k) = 4711(x(k) +x(k+ 1)), xi(k) = xo(k) -'ylxl(k- 1), y(k) =Xl(k) -- Vy(k+l).
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